3.82 \(\int \frac{x (d+e x^2)}{(a^2+2 a b x^2+b^2 x^4)^{3/2}} \, dx\)

Optimal. Leaf size=77 \[ -\frac{b d-a e}{4 b^2 \left (a+b x^2\right ) \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{e}{2 b^2 \sqrt{a^2+2 a b x^2+b^2 x^4}} \]

[Out]

-e/(2*b^2*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) - (b*d - a*e)/(4*b^2*(a + b*x^2)*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.0657618, antiderivative size = 77, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.097, Rules used = {1247, 640, 607} \[ -\frac{b d-a e}{4 b^2 \left (a+b x^2\right ) \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{e}{2 b^2 \sqrt{a^2+2 a b x^2+b^2 x^4}} \]

Antiderivative was successfully verified.

[In]

Int[(x*(d + e*x^2))/(a^2 + 2*a*b*x^2 + b^2*x^4)^(3/2),x]

[Out]

-e/(2*b^2*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) - (b*d - a*e)/(4*b^2*(a + b*x^2)*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])

Rule 1247

Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[
Int[(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x]

Rule 640

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(a + b*x + c*x^2)^(p +
 1))/(2*c*(p + 1)), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 607

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(2*(a + b*x + c*x^2)^(p + 1))/((2*p + 1)*(b + 2
*c*x)), x] /; FreeQ[{a, b, c, p}, x] && EqQ[b^2 - 4*a*c, 0] && LtQ[p, -1]

Rubi steps

\begin{align*} \int \frac{x \left (d+e x^2\right )}{\left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{d+e x}{\left (a^2+2 a b x+b^2 x^2\right )^{3/2}} \, dx,x,x^2\right )\\ &=-\frac{e}{2 b^2 \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{(b d-a e) \operatorname{Subst}\left (\int \frac{1}{\left (a^2+2 a b x+b^2 x^2\right )^{3/2}} \, dx,x,x^2\right )}{2 b}\\ &=-\frac{e}{2 b^2 \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{b d-a e}{4 b^2 \left (a+b x^2\right ) \sqrt{a^2+2 a b x^2+b^2 x^4}}\\ \end{align*}

Mathematica [A]  time = 0.0195536, size = 45, normalized size = 0.58 \[ \frac{-a e-b \left (d+2 e x^2\right )}{4 b^2 \left (a+b x^2\right ) \sqrt{\left (a+b x^2\right )^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*(d + e*x^2))/(a^2 + 2*a*b*x^2 + b^2*x^4)^(3/2),x]

[Out]

(-(a*e) - b*(d + 2*e*x^2))/(4*b^2*(a + b*x^2)*Sqrt[(a + b*x^2)^2])

________________________________________________________________________________________

Maple [A]  time = 0.009, size = 38, normalized size = 0.5 \begin{align*} -{\frac{ \left ( b{x}^{2}+a \right ) \left ( 2\,{x}^{2}eb+ae+bd \right ) }{4\,{b}^{2}} \left ( \left ( b{x}^{2}+a \right ) ^{2} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(e*x^2+d)/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x)

[Out]

-1/4*(b*x^2+a)*(2*b*e*x^2+a*e+b*d)/b^2/((b*x^2+a)^2)^(3/2)

________________________________________________________________________________________

Maxima [A]  time = 0.985069, size = 96, normalized size = 1.25 \begin{align*} -\frac{1}{4} \, e{\left (\frac{2}{\sqrt{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}} b^{2}} - \frac{a}{{\left (b^{2}\right )}^{\frac{3}{2}}{\left (x^{2} + \frac{a}{b}\right )}^{2} b}\right )} - \frac{d}{4 \,{\left (b^{2}\right )}^{\frac{3}{2}}{\left (x^{2} + \frac{a}{b}\right )}^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x^2+d)/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x, algorithm="maxima")

[Out]

-1/4*e*(2/(sqrt(b^2*x^4 + 2*a*b*x^2 + a^2)*b^2) - a/((b^2)^(3/2)*(x^2 + a/b)^2*b)) - 1/4*d/((b^2)^(3/2)*(x^2 +
 a/b)^2)

________________________________________________________________________________________

Fricas [A]  time = 1.49238, size = 86, normalized size = 1.12 \begin{align*} -\frac{2 \, b e x^{2} + b d + a e}{4 \,{\left (b^{4} x^{4} + 2 \, a b^{3} x^{2} + a^{2} b^{2}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x^2+d)/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x, algorithm="fricas")

[Out]

-1/4*(2*b*e*x^2 + b*d + a*e)/(b^4*x^4 + 2*a*b^3*x^2 + a^2*b^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x \left (d + e x^{2}\right )}{\left (\left (a + b x^{2}\right )^{2}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x**2+d)/(b**2*x**4+2*a*b*x**2+a**2)**(3/2),x)

[Out]

Integral(x*(d + e*x**2)/((a + b*x**2)**2)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{0} x \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x^2+d)/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x, algorithm="giac")

[Out]

sage0*x